Telomere Science

Telomeres are repetitive DNA sequences located at the ends of each chromosome in the human genome. They act as protective caps that maintain the integrity of the genome. Significantly, telomeres ensure proper cell division and prevent the formation of genomic aberrations that may lead to disease.

During cell division, the cellular genome should be accurately replicated to produce an identical copy of the genome. Properly functioning telomeres contribute to this process by regulating chromosomal organization to prevent random interactions between the chromosomes or regions of chromosomes.

Progressive shortening of telomeres leads to growth arrest and cell death in normal cells. “Telomeres dysfunction” is commonly seen in cancer cells where critically short telomeres do not trigger cell death. Moreover, telomere dysfunction is characterized by an altered 3D organization of the telomeres, often associated with telomeric aggregates, altered numbers and lengths of individual telomeres.

Telomere dysfunction triggers the formation of a variety of genetic modifications including recombination, fusions, and translocations; leading to ongoing and dynamic genomic instability (“GI”).

GI is a process where the cellular genome undergoes uncontrolled modifications during each cell division, and may cause the cell to escape natural programed cell death leading to genetic diseases including cancer.

GI by nature is an uncontrolled process; it may vary from cell to cell, from cancer to cancer and from one patient to another. This variability leads to what is known as disease heterogeneity, a hallmark in cancer.

In order to tailor treatments for individual patients over the course of their disease, diagnostic and prognostic tools must account for cellular heterogeneity and the evolving nature of proliferative disease. This can be achieved with technologies that employ single cell analysis of circulating tumor cells that are typically isolated using liquid biopsies.

Telo Genomics’ platform technology, TeloView®, is conducted on sample single cells; it can account for disease heterogeneity and also reduces the sample size needed to reach highly predictive powers in clinical studies.


TeloView® is the core of our proprietary technology and it consists of two parts, analytical software and a corresponding report designed for clinical decision making.

Our software was developed internally by Telo Genomics and then scaled and validated by CIMTEC, a respected Canadian imaging-software developer.

TeloView® utilizes the 3-dimensional analysis of 6 key parameters generated from the telomeres of a single cell. Multiple cells from an individual patient are independently analyzed.

TeloView®’s software generates a report for the clinician that contains important, actionable information including; the stage of a given disease, it’s rate of progression and how it will respond to therapy.

TeloView® is effective on any tissue type, but is focused on non-invasive applications
such as liquid biopsy (blood, urine, saliva etc.).

Non-invasive sampling methods are fast, relatively inexpensive and reproducible compared to tissue biopsies and can be used more frequently for the monitoring of patients. It involves the collection of circulating tumor cells (CTC’s), circulating tumor DNA (ctDNA) or other informative marker cells.

TeloView® sits at the end of a multi-step process that gathers and presents target cells in a 3-dimensional format that can be analyzed to generate a TeloView® report.

Telo Genomics’ Workflow with TeloView®

Key Publications with Potential Clinical Relevance

Key publications of interest and with clinical relevance  include Telo Genomics’ lead indication multiple myeloma, Alzheimer’s disease and prostate cancer. 

          • Tabs contain synopses of the key publications
          • Below are the original publications
    • A proof of concept study (Klewes et al., 2013) and validation study (Yu et al., 2019) showing the utility of TeloView® technology to stratify multiple myeloma patients

    • TeloView® technology for multiple myeloma can be conducted on liquid biopsy (blood samples) (Klewes et al., 2013)

    • TeloView® technology utility as a companion diagnostics tool that can potentially predict patient’s drug response (Kashton-Taylor et al., 2017)
    • A proof of concept study (Mathur et al., 2014) and a validation study (Garcia et al., 2017) showing the potential of TeloView® technology to stratify AD patients into their respective clinical disease stage
    • With a 77% prediction power, TeloView® predicts intermediate risk PC patients who require clinical intervention (prostatectomy) versus patients who qualifies for active surveillance (Drachenberg et al., 2019)

    • TeloView® technology for PC can be conducted on liquid biopsies (circulating tumor cells isolated from blood samples) from all patient-risk groups of the disease (Adebayo et al., 2013, Awe et al., 2017) 

Contact Us